Deflated Gmres for Systems with Multiple Shifts and Multiple Right-hand Sides∗
نویسندگان
چکیده
We consider solution of multiply shifted systems of nonsymmetric linear equations, possibly also with multiple right-hand sides. First, for a single right-hand side, the matrix is shifted by several multiples of the identity. Such problems arise in a number of applications, including lattice quantum chromodynamics where the matrices are complex and non-Hermitian. Some Krylov iterative methods such as GMRES and BiCGStab have been used to solve multiply shifted systems for about the cost of solving just one system. Restarted GMRES can be improved by deflating eigenvalues for matrices that have a few small eigenvalues. We show that a particular deflated method, GMRES-DR, can be applied to multiply shifted systems. In quantum chromodynamics, it is common to have multiple right-hand sides with multiple shifts for each right-hand side. We develop a method that efficiently solves the multiple right-hand sides by using a deflated version of GMRES and yet keeps costs for all of the multiply shifted systems close to those for one shift. An example is given showing this can be extremely effective with a quantum chromodynamics matrix.
منابع مشابه
ar X iv : 0 70 7 . 05 02 v 1 [ m at h - ph ] 3 J ul 2 00 7 DEFLATED GMRES FOR SYSTEMS WITH MULTIPLE SHIFTS AND MULTIPLE RIGHT - HAND SIDES
We consider solution of multiply shifted systems of nonsymmetric linear equations, possibly also with multiple right-hand sides. First, for a single right-hand side, the matrix is shifted by several multiples of the identity. Such problems arise in a number of applications, including lattice quantum chromodynamics where the matrices are complex and non-Hermitian. Some Krylov iterative methods s...
متن کاملDeflated BiCGStab for linear equations in QCD problems
The large systems of complex linear equations that are generated in QCD problems often have multiple right-hand sides (for multiple sources) and multiple shifts (for multiple masses). Deflated GMRES methods have previously been developed for solving multiple right-hand sides. Eigenvectors are generated during solution of the first right-hand side and used to speed up convergence for the other r...
متن کاملDeflation of Eigenvalues for Iterative Methods in Lattice QCD
Work on generalizing the deflated, restarted GMRES algorithm, useful in lattice studies using stochastic noise methods, is reported. We first show how the multi-mass extension of deflated GMRES can be implemented. We then give a deflated GMRES method that can be used on multiple right-hand sides of Ax = b in an efficient manner. We also discuss and give numerical results on the possibilty of co...
متن کاملNew variants of the global Krylov type methods for linear systems with multiple right-hand sides arising in elliptic PDEs
In this paper, we present new variants of global bi-conjugate gradient (Gl-BiCG) and global bi-conjugate residual (Gl-BiCR) methods for solving nonsymmetric linear systems with multiple right-hand sides. These methods are based on global oblique projections of the initial residual onto a matrix Krylov subspace. It is shown that these new algorithms converge faster and more smoothly than the Gl-...
متن کاملDeflated Iterative Methods for Linear Equations with Multiple Right-hand Sides∗
A new approach is discussed for solving large nonsymmetric systems of linear equations with multiple right-hand sides. The first system is solved with a deflated GMRES method that generates eigenvector information at the same time that the linear equations are solved. Subsequent systems are solved by combining restarted GMRES with a projection over the previously determined eigenvectors. This a...
متن کامل